Parity Polytopes and Binarization
نویسندگان
چکیده
We consider generalizations of parity polytopes whose variables, in addition to a parity constraint, satisfy certain ordering constraints. More precisely, the variable domain is partitioned into k contiguous groups, and within each group, we require xi ≥ xi+1 for all relevant i. Such constraints are used to break symmetry after replacing an integer variable by a sum of binary variables, so-called binarization. We provide extended formulations for such polytopes, derive a complete outer description, and present a separation algorithm for the new constraints. It turns out that applying binarization and only enforcing parity constraints on the new variables is often a bad idea. For our application, an integer programming model for the graphic traveling salesman problem, we observe that parity constraints do not improve the dual bounds, and we provide a theoretical explanation of this effect.
منابع مشابه
On Laminar Matroids and b-Matchings
We prove that three matroid optimisation problems, namely, the matchoid, matroid parity and matroid matching problems, all reduce to the b-matching problem when the matroids concerned are laminar. We then use this equivalence to show that laminar matroid parity polytopes are affinely congruent to b-matching polytopes, and have Chvátal rank equal to one. On the other hand, we prove that laminar ...
متن کاملOn Matroid Parity and Matching Polytopes∗
The matroid parity (MP) problem is a natural extension of the matching problem to the matroid setting. It can be formulated as a 0− 1 linear program using the so-called rank and line constraints. We call the associated family of polytopes MP polytopes. We then prove the following: (i) when the matroid is a gammoid, each MP polytope is a projection of a perfect matching polytope into a suitable ...
متن کاملLinear Programming, the Simplex Algorithm and Simple Polytopes
In the first part of the paper we survey some far reaching applications of the basis facts of linear programming to the combinatorial theory of simple polytopes. In the second part we discuss some recent developments concurring the simplex algorithm. We describe sub-exponential randomized pivot roles and upper bounds on the diameter of graphs of polytopes.
متن کاملHypercube Related Polytopes
Body centered structures are used as seeds for a variety of structures of rank 3 and higher. Propellane based structures are introduced and their design and topological properties are detailed.
متن کاملCounting faces of cubical spheres modulo two
Several recent papers have addressed the problem of characterizing the f -vectors of cubical polytopes. This is largely motivated by the complete characterization of the f -vectors of simplicial polytopes given by Stanley, Billera, and Lee in 1980 [19] [4]. Along these lines Blind and Blind [5] have shown that unlike in the simplicial case, there are parity restrictions on the f -vectors of cub...
متن کامل